Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2005
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Juxtaposition between two cell types is necessary for dorsal appendage tube formation

Authors: Ward, Ellen J.; Berg, Celeste A.;

Juxtaposition between two cell types is necessary for dorsal appendage tube formation

Abstract

The Drosophila egg chamber provides an excellent model for studying the link between patterning and morphogenesis. Late in oogenesis, a portion of the flat follicular epithelium remodels to form two tubes; secretion of eggshell proteins into the tube lumens creates the dorsal appendages. Two distinct cell types contribute to dorsal appendage formation: cells expressing the rhomboid-lacZ (rho-lacZ) marker form the ventral floor of the tube and cells expressing high levels of the transcription factor Broad form a roof over the rho-lacZ cells. In mutants that produce defective dorsal appendages (K10, Ras and ectopic decapentaplegic) both cell types are specified and reorganize to occupy their stereotypical locations within the otherwise defective tubes. Although the rho-lacZ and Broad cells rearrange to form a tube in wild type and mutant egg chambers, they never intermingle, suggesting that a boundary exists that prevents mixing between these two cell types. Consistent with this hypothesis, the Broad and rho-lacZ cells express different levels of the homophilic adhesion molecule Fasciclin 3. Furthermore, in the anterior of the egg, ectopic rhomboid is sufficient to induce both cell types, which reorganize appropriately to form an ectopic tube. We propose that signaling across a boundary separating the rho-lacZ and Broad cells choreographs the cell shape-changes and rearrangements necessary to transform an initially flat epithelium into a tube.

Related Organizations
Keywords

Embryology, Time Factors, Cell Adhesion Molecules, Neuronal, Green Fluorescent Proteins, Gene Expression Regulation, Developmental, Immunohistochemistry, Epithelium, Drosophila melanogaster, Oogenesis, Lac Operon, Microscopy, Fluorescence, Mutation, Cell Adhesion, Animals, Drosophila Proteins, Cell Lineage, Cell Shape, Alleles, Crosses, Genetic, Developmental Biology, Cell Size, Ovum

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
hybrid