Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Free Radical Biology...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Free Radical Biology and Medicine
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

IDH2 deficiency promotes mitochondrial dysfunction and cardiac hypertrophy in mice

Authors: Jeen-Woo Park; Jin Hyup Lee; Youngkeun Ahn; Hyeong Jun Ku; Kwon Moo Park;

IDH2 deficiency promotes mitochondrial dysfunction and cardiac hypertrophy in mice

Abstract

Cardiac hypertrophy, a risk factor for heart failure, is associated with enhanced oxidative stress in the mitochondria, resulting from high levels of reactive oxygen species (ROS). The balance between ROS generation and ROS detoxification dictates ROS levels. As such, disruption of these processes results in either increased or decreased levels of ROS. In previous publications, we have demonstrated that one of the primary functions of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2) is to control the mitochondrial redox balance, and thereby mediate the cellular defense against oxidative damage, via the production of NADPH. To explore the association between IDH2 expression and cardiac function, we measured myocardial hypertrophy, apoptosis, and contractile dysfunction in IDH2 knockout (idh2(-/-)) and wild-type (idh2(+/+)) mice. As expected, mitochondria from the hearts of knockout mice lacked IDH2 activity and the hearts of IDH2-deficient mice developed accelerated heart failure, increased levels of apoptosis and hypertrophy, and exhibited mitochondrial dysfunction, which was associated with a loss of redox homeostasis. Our results suggest that IDH2 plays an important role in maintaining both baseline mitochondrial function and cardiac contractile function following pressure-overload hypertrophy, by preventing oxidative stress.

Related Organizations
Keywords

Heart Failure, Male, Mice, Knockout, Myocardium, Molecular Sequence Data, Gene Expression, Apoptosis, Cardiomegaly, Myocardial Contraction, Isocitrate Dehydrogenase, Mitochondria, Mice, Inbred C57BL, Mice, Oxidative Stress, Animals, Amino Acid Sequence, Reactive Oxygen Species, Oxidation-Reduction, NADP

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 10%
Top 10%
Top 10%