Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2007
versions View all 4 versions

The MN1-TEL myeloid leukemia-associated fusion protein has a dominant-negative effect on RAR-RXR-mediated transcription

Authors: Gerard Grosveld; K. H. M. van Wely; Marjolein J. F. W. Janssen; Magda A. Meester-Smoor; Ellen C. Zwarthoff; A.-J. Aarnoudse;

The MN1-TEL myeloid leukemia-associated fusion protein has a dominant-negative effect on RAR-RXR-mediated transcription

Abstract

The translocation t(12;22)(p13;q11) creates an MN1-TEL fusion gene leading to acute myeloid leukemia. MN1 is a transcription coactivator of the retinoic acid and vitamin D receptors, and TEL (ETV6) is a member of the E26-transformation-specific family of transcription factors. In MN1-TEL, the transactivating domains of MN1 are combined with the DNA-binding domain of TEL. We show that MN1-TEL inhibits retinoic acid receptor (RAR)-mediated transcription, counteracts coactivators such as p160 and p300, and acts as a dominant-negative mutant of MN1. Compared to MN1, the same transactivation domains in MN1-TEL are poorly stimulated by p160, p300 or histone deacetylase inhibitors, indicating that the block of RAR-mediated transcription by MN1-TEL is caused by dysfunctional transactivation domains rather than by recruitment of corepressors. The mechanism leading to myeloid leukemia in t(12;22) thus differs from the translocations that involve RAR itself.

Keywords

Nucleocytoplasmic Transport Proteins, Carcinoma, Hepatocellular, Chromosomes, Human, Pair 12, Oncogene Proteins, Fusion, Transcription, Genetic, Receptors, Retinoic Acid, Reverse Transcriptase Polymerase Chain Reaction, Chromosomes, Human, Pair 22, Liver Neoplasms, Nuclear Proteins, RNA-Binding Proteins, EMC MM-03-24-01, DNA-Binding Proteins, Histone Deacetylase Inhibitors, Retinoid X Receptors, Mutation, Humans, Enzyme Inhibitors, E1A-Associated p300 Protein, Genes, Dominant, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
bronze