Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Research
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Research
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Cell Research
Article . 2005
versions View all 2 versions

DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatments

Authors: Wen Hui, Lin; Rui, Ye; Hui, Ma; Zhi Hong, Xu; Hong Wei, Xue;

DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatments

Abstract

The phosphatidylinositol (PI) metabolic pathway is considered critical in plant responses to many environmental factors, and previous studies have indicated the involvement of multiple PI-related gene families during cellular responses. Through a detailed analysis of the Arabidopsis thaliana genome, 82 polypeptides were identified as being involved in PI signaling. These could be grouped into different families including PI synthases (PIS), PI-phosphate kinases (PIPK), phospholipases (PL), inositol polyphosphate phosphatases (IPPase), inositol polyphosphate kinases (IPK), PI transfer proteins and putative inositol polyphosphate receptors. The presence of more than 10 isoforms of PIPK, PLC, PLD and IPPase suggested that these genes might be differentially expressed during plant cellular responses or growth and development. Accordingly, DNA chip technology was employed to study the expression patterns of various isoforms. In total, 79 mRNA clones were amplified and used for DNA chip generation. Expression profile analysis was performed using samples that represented multiple tissues or cellular responses. Tested samples included normal leaf, stem and flower tissues, and leaves from plants treated with various hormones (auxin, cytokinin, gibberellin, abscisic acid and brassinosteroid) or environmental factors (temperature, calcium, sodium, drought, salicylic acid and jasmonic acid). Results showed that many PI pathway-related genes were differentially expressed under these experimental conditions. In particular, the different isoforms of each family were specifically expressed in many cases, suggesting their involvement in tissue specificity and cellular responses to environmental conditions. This work provides a starting point for functional studies of the relevant PI-related proteins and may help shed light onto the role of PI pathways in development and cellular responses.

Related Organizations
Keywords

Arabidopsis Proteins, Gene Expression Profiling, Arabidopsis, Down-Regulation, Gene Expression, Membrane Proteins, Environment, CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase, Phosphatidylinositols, Cold Temperature, Disasters, Calcium Chloride, Phosphatidylinositol 3-Kinases, Gene Expression Regulation, Plant, Databases, Genetic, Cluster Analysis, Inositol 1,4,5-Trisphosphate Receptors, Calcium Channels, 1-Phosphatidylinositol 4-Kinase, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
bronze