Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Identification and Characterization of the Human Mus81-Eme1 Endonuclease

Authors: Alberto, Ciccia; Angelos, Constantinou; Stephen C, West;

Identification and Characterization of the Human Mus81-Eme1 Endonuclease

Abstract

The faithful and complete replication of DNA is necessary for the maintenance of genome stability. It is known, however, that replication forks stall at lesions in the DNA template and need to be processed so that replication restart can occur. In fission yeast, the Mus81-Eme1 endonuclease complex (Mus81-Mms4 in Saccharomyces cerevisiae) has been implicated in the processing of aberrant replication intermediates. In this report, we identify the human homolog of the Schizosaccharomyces pombe EME1 gene and have purified the human Mus81-Eme1 heterodimer. We show that Mus81-Eme1 is an endonuclease that exhibits a high specificity for synthetic replication fork structures and 3'-flaps in vitro. The nuclease cleaves Holliday junctions inefficiently ( approximately 75-fold less than flap or fork structures), although cleavage can be increased 6-fold by the presence of homologous sequences previously shown to permit base pair "breathing." We conclude that human Mus81-Eme1 is a flap/fork endonuclease that is likely to play a role in the processing of stalled replication fork intermediates.

Related Organizations
Keywords

DNA Replication, DNA-Binding Proteins, Saccharomyces cerevisiae Proteins, Molecular Sequence Data, Humans, Amino Acid Sequence, Schizosaccharomyces pombe Proteins, Endonucleases, Sequence Alignment, Substrate Specificity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    183
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
183
Top 10%
Top 10%
Top 1%
gold