SAAMBE-3D: Predicting Effect of Mutations on Protein–Protein Interactions
SAAMBE-3D: Predicting Effect of Mutations on Protein–Protein Interactions
Maintaining wild type protein–protein interactions is essential for the normal function of cell and any mutation that alter their characteristics can cause disease. Therefore, the ability to correctly and quickly predict the effect of amino acid mutations is crucial for understanding disease effects and to be able to carry out genome-wide studies. Here, we report a new development of the SAAMBE method, SAAMBE-3D, which is a machine learning-based approach, resulting in accurate predictions and is extremely fast. It achieves the Pearson correlation coefficient ranging from 0.78 to 0.82 depending on the training protocol in benchmarking five-fold validation test against the SKEMPI v2.0 database and outperforms currently existing algorithms on various blind-tests. Furthermore, optimized and tested via five-fold cross-validation on the Cornell University dataset, the SAAMBE-3D achieves AUC of 1.0 and 0.96 on a homo and hereto-dimer test datasets. Another important feature of SAAMBE-3D is that it is very fast, it takes less than a fraction of a second to complete a prediction. SAAMBE-3D is available as a web server and as well as a stand-alone code, the last one being another important feature allowing other researchers to directly download the code and run it on their local computer. Combined all together, SAAMBE-3D is an accurate and fast software applicable for genome-wide studies to assess the effect of amino acid mutations on protein–protein interactions. The webserver and the stand-alone codes (SAAMBE-3D for predicting the change of binding free energy and SAAMBE-3D-DN for predicting if the mutation is disruptive or non-disruptive) are available.
protein–protein binding, Proteins, Article, stabilizing and destabilizing mutation, Machine Learning, disruptive and non-disruptive mutation, machine learning, Mutation, Humans, Protein Interaction Maps, Amino Acids, Algorithms, Software, Genome-Wide Association Study, Protein Binding
protein–protein binding, Proteins, Article, stabilizing and destabilizing mutation, Machine Learning, disruptive and non-disruptive mutation, machine learning, Mutation, Humans, Protein Interaction Maps, Amino Acids, Algorithms, Software, Genome-Wide Association Study, Protein Binding
5 Research products, page 1 of 1
- 1996IsRelatedTo
- 1999IsRelatedTo
- 1998IsRelatedTo
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).100 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
