Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Gene
Article . 2003
versions View all 2 versions

The Drosophila melanogaster multidrug-resistance protein 1 (MRP1) homolog has a novel gene structure containing two variable internal exons

Authors: Marine, Grailles; Paul T, Brey; Charles W, Roth;

The Drosophila melanogaster multidrug-resistance protein 1 (MRP1) homolog has a novel gene structure containing two variable internal exons

Abstract

Drosophila melanogaster has a gene very similar to human MRP1 that encodes a full ABC-transporter containing three membrane-spanning domains and two nucleotide-binding domains. This 19 exon insect gene, dMRP (FBgn0032456), spans slightly more than 22 kb. The cDNA SD07655 representing this gene was sequenced and found to contain sequences from 12 exons including single copies of two exons having multiple genomic copies. The gene contains two variant copies of exon 4 and seven of exon 8. While a cDNA contains only one version of each variable exon, all forms of these variable exons were detected in adult fly mRNA. These results predict that Drosophila could make 14 different MRP isoforms from a single gene by substituting different variable exons. This is the first report of any organism using differential splicing of alternative, internal exons, to produce such a large array of MRP isoforms having the same size, but with limited and defined internal variations. Defining the functional differences in the dMRP isoforms should provide clues to the structure/function relationships of the amino acids in these MRP domains, both for the insect enzyme and for those of other species.

Related Organizations
Keywords

Sequence Homology, Amino Acid, Molecular Sequence Data, Gene Expression, Genes, Insect, DNA, Exons, Sequence Analysis, DNA, Introns, Drosophila melanogaster, Animals, Amino Acid Sequence, Multidrug Resistance-Associated Proteins, Sequence Alignment, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Top 10%
Average