Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Hematol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Hematology
Article . 2019 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 1 versions

3175 – HEMATOPOIETIC STEM CELL-DEPENDENT NOTCH TRANSCRIPTION IS MEDIATED BY P53 THROUGH THE HISTONE CHAPERONE SUPT16

Authors: Yoonsung Lee;

3175 – HEMATOPOIETIC STEM CELL-DEPENDENT NOTCH TRANSCRIPTION IS MEDIATED BY P53 THROUGH THE HISTONE CHAPERONE SUPT16

Abstract

Hematopoietic stem cells (HSCs) are rare cells that can self-renew and differentiate into all blood cell lineages for life. HSCs have long been the focus of developmental and regenerative studies, yet our understanding of the signaling events regulating their specification remains incomplete. In order to identify novel genes and transcription factors involved in hematopoietic specification, we performed a forward genetic screen to identify zebrafish mutants defective in HSC formation. Through large-scale whole mount in situ hybridization based screens followed by RNA-sequencing-based linkage mapping, we identified that supt16h, a component of the FAcilitates Chromatin Transcription (FACT) complex, is required for HSC formation. Zebrafish supt16h mutants express reduced levels of Notch signaling components, genes essential for HSC development, due to abrogated transcription. Although cellular functions of Supt16h is generally known for regulating transcription and reorganizing nucleosomes to alter chromatin accessibility, global chromatin accessibility in the zebrafish supt16h mutants is unaffected. However, we observe a specific increase in accessibility at the p53 locus leading to an accumulation of P53 protein in the supt16h mutants and abrogation of increased p53 levels in supt16h mutants rescues both loss of Notch and HSC phenotypes. We further demonstrate that P53 levels directly influence expression of the Polycomb Group protein, Phc1, which functions as a transcriptional repressor of Notch genes. Suppression of phc1 or its upstream regulator, p53, rescues both loss of Notch and loss of HSC phenotypes in supt16h mutants. Taken together, our results highlight a previously uncharacterized relationship between supt16h, p53, and phc1 to specify HSCs via modulation of Notch signaling.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average