Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Gene
Article . 2001
versions View all 2 versions

Genomic scrap yard: how genomes utilize all that junk

Authors: Wojciech Makalowski;

Genomic scrap yard: how genomes utilize all that junk

Abstract

Interspersed repetitive sequences are major components of eukaryotic genomes. Repetitive elements comprise over 50% of the mammalian genome. Because the specific function of these elements remains to be defined and because of their unusual 'behaviour' in the genome, they are often quoted as a selfish or junk DNA. Our view of the entire phenomenon of repetitive elements has to now be revised in the light of data on their biology and evolution, especially in the light of what we know about the retroposons. I would like to argue that even if we cannot define the specific function of these elements, we still can show that they are not useless pieces of the genomes. The repetitive elements interact with the surrounding sequences and nearby genes. They may serve as recombination hot spots or acquire specific cellular functions such as RNA transcription control or even become part of protein coding regions. Finally, they provide very efficient mechanism for genomic shuffling. As such, repetitive elements should be called genomic scrap yard rather than junk DNA. Tables listing examples of recruited (exapted) transposable elements are available at http://www.ncbi.nlm.gov/Makalowski/ScrapYard/

Keywords

Genome, Gene Expression Regulation, Genome, Human, DNA Transposable Elements, Animals, Humans, DNA, Repetitive Sequences, Nucleic Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    155
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
155
Top 10%
Top 1%
Top 1%