Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article . 1992 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Fission yeastcdc21+belongs to a family of proteins involved in an early step of chromosome replication

Authors: Angela Coxon; Kinsey Maundrell; Stephen E. Kearsey;

Fission yeastcdc21+belongs to a family of proteins involved in an early step of chromosome replication

Abstract

The cdc21+ gene of Schizosaccharomyces pombe was originally identified in a screen for cdc mutants affecting S phase and nuclear division. Here we show that the cdc21+ gene product belongs to a family of proteins implicated in DNA replication. These include the Saccharomyces cerevisiae MCM2 and MCM3 proteins, which are needed for the efficient function of certain replication origins, and S.cerevisiae CDC46, which is required for the initiation of chromosome replication. The cdc21 mutant is defective in the mitotic maintenance of some plasmids, like mcm2 and mcm3. The mutant arrests with a single nucleus containing two genome equivalents of DNA, and maintains a cytoplasmic microtubular configuration. Activation of most, but not all, replication origins in the mutant may result in failure to replicate a small proportion of the genome, and this could explain the arrest phenotypes. Using the polymerase chain reaction technique, we have identified new cdc21(+)-related genes in S.cerevisiae, S.pombe and Xenopus laevis. Our results suggest that individual members of the cdc21(+)-related family are highly conserved in evolution.

Related Organizations
Keywords

DNA Replication, Base Sequence, Chromosomal Proteins, Non-Histone, Genes, Fungal, Molecular Sequence Data, Restriction Mapping, Minichromosome Maintenance Complex Component 3, Nuclear Proteins, Cell Cycle Proteins, Polymerase Chain Reaction, Minichromosome Maintenance Complex Component 4, DNA-Binding Proteins, Fungal Proteins, Phenotype, Animals, Humans, Amino Acid Sequence, Chromosomes, Fungal, Cloning, Molecular, DNA, Fungal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    130
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
130
Top 10%
Top 1%
Top 1%
gold