Mechanism of Enhanced Cardiac Function in Mice with Hypertrophy Induced by Overexpressed Akt
pmid: 13129932
Mechanism of Enhanced Cardiac Function in Mice with Hypertrophy Induced by Overexpressed Akt
Transgenic mice with cardiac-specific overexpression of active Akt (TG) not only exhibit hypertrophy but also show enhanced left ventricular (LV) function. In 3-4-month-old TG, heart/body weight was increased by 60% and LV ejection fraction was elevated (84 +/- 2%, p < 0.01) compared with nontransgenic littermates (wild type (WT)) (73 +/- 1%). An increase in isolated ventricular myocyte contractile function (% contraction) in TG compared with WT (6.1 +/- 0.2 versus 3.5 +/- 0.2%, p < 0.01) was associated with increased Fura-2 Ca2+ transients (396 +/- 50 versus 250 +/- 24 nmol/liter, p < 0.05). The rate of relaxation (+dL/dt) was also enhanced in TG (214 +/- 15 versus 98 +/- 18 microm/s, p < 0.01). L-type Ca2+ current (ICa) density was increased in TG compared with WT (-9.0 +/- 0.3 versus 7.2 +/- 0.3 pA/pF, p < 0.01). Sarcoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) protein levels were increased (p < 0.05) by 6.6-fold in TG, which could be recapitulated in vitro by adenovirus-mediated overexpression of Akt in cultured adult ventricular myocytes. Conversely, inhibiting SERCA with either ryanodine or thapsigargin affected myocyte contraction and relaxation and Ca2+ channel kinetics more in TG than in WT. Thus, myocytes from mice with overexpressed Akt demonstrated enhanced contractility and relaxation, Fura-2 Ca2+ transients, and Ca2+ channel currents. Furthermore, increased protein expression of SERCA2a plays an important role in mediating enhanced LV function by Akt. Up-regulation of SERCA2a expression and enhanced LV myocyte contraction and relaxation in Akt-induced hypertrophy is opposite to the down-regulation of SERCA2a and reduced contractile function observed in many other forms of LV hypertrophy.
- Rutgers, The State University of New Jersey United States
- Kimmel Cancer Center United States
- Thomas Jefferson University United States
- Rutgers New Jersey Medical School United States
- Rutgers Health United States
Dose-Response Relationship, Drug, Heart Ventricles, Blotting, Western, Body Weight, Down-Regulation, Calcium-Transporting ATPases, Hypertrophy, Alkaline Phosphatase, Adenoviridae, Electrophysiology, Inhibitory Concentration 50, Kinetics, Mice, Echocardiography, Animals, Calsequestrin, Calcium, Enzyme Inhibitors, Fura-2, Lysophospholipase
Dose-Response Relationship, Drug, Heart Ventricles, Blotting, Western, Body Weight, Down-Regulation, Calcium-Transporting ATPases, Hypertrophy, Alkaline Phosphatase, Adenoviridae, Electrophysiology, Inhibitory Concentration 50, Kinetics, Mice, Echocardiography, Animals, Calsequestrin, Calcium, Enzyme Inhibitors, Fura-2, Lysophospholipase
10 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).103 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
