The Role of FK506-Binding Proteins 12 and 12.6 in Regulating Cardiac Function
The Role of FK506-Binding Proteins 12 and 12.6 in Regulating Cardiac Function
Specifically, FK506-binding proteins 12 (FKBP12) and 12.6 (FKBP12.6) are cis-trans peptidyl prolyl isomerases that are expressed in the heart. Both FKBP12 and FKBP12.6 were previously known to interact with ryanodine receptors in striated muscles. Although FKBP12 is abundantly present in the heart, its function in the heart is largely uncertain. Recently, by generating FKBP12 transgenic overexpression and cardiac-restricted knockout mice, we showed that FKBP12 is critically important in regulating trans-sarcolemmal ionic currents, predominately the voltage-gated Na+ current, I(Na), but it appears to be less important for regulating cardiac ryanodine receptor function. Similar genetic approaches also confirm the role of FKBP12.6 in regulating cardiac ryanodine receptors. The current study demonstrated that FKBP12 and FKBP12.6 have very different physiologic functions in the heart.
- Indiana University United States
- Harbin Medical University China (People's Republic of)
- Indiana University School of Medicine United States
Mice, Knockout, Tacrolimus Binding Proteins, Mice, Animals, Calcium, Heart, Myocytes, Cardiac, Ryanodine Receptor Calcium Release Channel
Mice, Knockout, Tacrolimus Binding Proteins, Mice, Animals, Calcium, Heart, Myocytes, Cardiac, Ryanodine Receptor Calcium Release Channel
11 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
