Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Genetics
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 2009
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

The establishment of gene silencing at single-cell resolution

Authors: Osborne, Erin A; Dudoit, Sandrine; Rine, Jasper;

The establishment of gene silencing at single-cell resolution

Abstract

The establishment of silencing in Saccharomyces cerevisiae is similar to heterochromatin formation in multicellular eukaryotes. Previous batch culture studies determined that the de novo establishment of silencing initiates during S phase and continues for up to five cell divisions for completion. To track silencing phenotypically, we developed an assay that introduces Sir3 protein into individual sir3Delta mutant cells synchronously and then detects the onset of silencing with single-cell resolution. Silencing was completed within the first one to two cell divisions in most cells queried. Moreover, we uncovered unexpected complexity in the contributions of a histone acetyltransferase (Sas2), two histone methytransferases (Dot1 and Set1) and one histone demethylase (Jhd2) to the dynamics of silencing. Our findings showed that removal of methyl modifications at H3K4 and H3K79 were important steps in silent chromatin formation and that Jhd2 and Set1 had competing roles in the process.

Keywords

Saccharomyces cerevisiae Proteins, Saccharomyces cerevisiae, Medical and Health Sciences, Methylation, Article, Histones, Silent Information Regulator Proteins, Acetyltransferases, Gene Expression Regulation, Fungal, Gene Silencing, Silent Information Regulator Proteins, Saccharomyces cerevisiae, Histone Acetyltransferases, Nuclear Proteins, Histone-Lysine N-Methyltransferase, Biological Sciences, Chromatin Assembly and Disassembly, DNA-Binding Proteins, Kinetics, Fungal, Gene Expression Regulation, Generic health relevance, Developmental Biology, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 10%
Green
hybrid