Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Neuroscience
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Neuregulin-1β induces neurite extension and arborization in cultured hippocampal neurons

Authors: Kimberly M, Gerecke; J Michael, Wyss; Steven L, Carroll;

Neuregulin-1β induces neurite extension and arborization in cultured hippocampal neurons

Abstract

Neuregulin-1 (NRG-1) growth and differentiation factors and their erbB receptors are hypothesized to promote embryonic hippocampal neuron differentiation via as yet unknown mechanisms. We have found that NRG-1beta increases the outgrowth of primary neurites, neuronal area, total neurite length, and neuritic branching in E18 hippocampal neurons. NRG-1beta effects on neurite extension and arborization are similar to, but not additive with, those of brain-derived neurotrophic factor and reflect direct NRG-1 action on hippocampal neurons as these cells express the NRG-1 receptors erbB2 and erbB4, the erbB-specific inhibitor PD158780 decreases NRG-1beta induced neurite outgrowth, and NRG-1beta stimulation induces p42/44 ERK phosphorylation. Pharmacological inhibition of p42/44 ERK and protein kinase C (PKC), but not PI3K or p38 MAP kinase, inhibits NRG-1beta-induced neurite extension and elaboration. We conclude that NRG-1beta stimulates hippocampal neurite extension and arborization via a signaling pathway that involves erbB membrane tyrosine kinases (erbB2 and/or erbB4), p42/44 ERK, and PKC.

Related Organizations
Keywords

Mitogen-Activated Protein Kinase 1, Receptor, ErbB-4, Receptor, ErbB-2, Brain-Derived Neurotrophic Factor, Neuregulin-1, Cell Differentiation, Nerve Tissue Proteins, Hippocampus, Rats, ErbB Receptors, Neurites, Animals, Protein Isoforms, Enzyme Inhibitors, Cells, Cultured, Protein Kinase C, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 10%
Top 10%
Top 10%