Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2008 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2008
versions View all 2 versions

Regulation of Gastric Carcinogenesis by Helicobacter pylori Virulence Factors

Authors: Aime T, Franco; Elizabeth, Johnston; Uma, Krishna; Yoshio, Yamaoka; Dawn A, Israel; Toni A, Nagy; Lydia E, Wroblewski; +3 Authors

Regulation of Gastric Carcinogenesis by Helicobacter pylori Virulence Factors

Abstract

Abstract Helicobacter pylori is the strongest known risk factor for gastric adenocarcinoma, and strains that possess the cag secretion system, which translocates the bacterial effector CagA into host cells, augment cancer risk. H. pylori strains that express the vacuolating cytotoxin or the outer membrane protein OipA are similarly associated with severe pathologic outcomes. We previously reported that an in vivo adapted H. pylori strain, 7.13, induces gastric adenocarcinoma in rodent models of gastritis. In the current study, we used carcinogenic strain 7.13 as a prototype to define the role of virulence constituents in H. pylori–mediated carcinogenesis. Mongolian gerbils were infected with wild-type strain 7.13 or cagA−, vacA−, or oipA− mutants for 12 to 52 weeks. All infected gerbils developed gastritis; however, inflammation was significantly attenuated in animals infected with the cagA− but not the vacA− or oipA− strains. Gastric dysplasia and cancer developed in >50% of gerbils infected with either the wild-type or vacA− strain but in none of the animals infected with the cagA− strain. Inactivation of oipA decreased β-catenin nuclear localization in vitro and reduced the incidence of cancer in gerbils. OipA expression was detected significantly more frequently among H. pylori strains isolated from human subjects with gastric cancer precursor lesions versus persons with gastritis alone. These results indicate that loss of CagA prevents the development of cancer in this model. Inactivation of oipA attenuates β-catenin nuclear translocation and also decreases the incidence of carcinoma. In addition to defining factors that mediate H. pylori–induced cancer, these results provide insight into mechanisms that may regulate the development of other malignancies arising within the context of inflammatory states. [Cancer Res 2008;68(2):379–87]

Related Organizations
Keywords

Adult, Male, Antigens, Bacterial, Helicobacter pylori, Virulence Factors, Gene Expression Regulation, Bacterial, Adenocarcinoma, Middle Aged, Bacterial Adhesion, Cell Transformation, Neoplastic, Bacterial Proteins, Stomach Neoplasms, Gastritis, Animals, Humans, Mutant Proteins, Adhesins, Bacterial, Gerbillinae, Cells, Cultured, Bacterial Outer Membrane Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    244
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
244
Top 1%
Top 10%
Top 1%
bronze