Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Immunology
Article . 2001 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 2 versions

Evolution of T cell receptor (TCR) α β heterodimer assembly with the CD3 complex

Authors: C, Gouaillard; A, Huchenq-Champagne; J, Arnaud; C L, Chen Cl; B, Rubin;

Evolution of T cell receptor (TCR) α β heterodimer assembly with the CD3 complex

Abstract

T cell antigen receptors (TCR) are composed of an antigen-recognizing unit, the TCRalpha beta heterodimer, and a signal transduction ensemble, the CD3 complex. Whereas mammals possess three CD3 dimers (delta epsilon, gamma epsilon, and zeta2), birds and amphibians have only two (delta/gamma-epsilon and zeta2). To understand evolutionary changes in TCR/CD3 assembly,a phylogenetic approach was employed to dissect the interaction of TCRalpha beta heterodimers with the CD3 components. While sheep and mouse TCRalpha and TCRbeta chains could replace the corresponding human chains in mutant human T cells to restore surface TCR/CD3 expression and function, chicken TCRalpha, TCRbeta and CD3delta/gamma chains were unable to replace the corresponding human chains in forming a chimeric TCR/CD3 complex. The inability of chicken TCR/CD3 components to replace the human molecules in T cells was found to result from the lack of interaction between chicken TCRalpha beta heterodimers and the human CD3 complex. In contrast, if no CD3 molecules are present (non-T cells), TCRalpha -TCRbeta chain pairing can take place in an apparently non-controlled way. Thus, the TCR-CD3 interactions have changed with the evolutionary divergence of two mammalian CD3gamma and CD3delta genes from a single prototypic chicken delta/gamma gene. Our data suggest that the structures in mammalian TCR.C regions, which distinguish between CD3delta and CD3gamma chains, have evolved with the appearance of two separate CD3delta and CD3gamma functions.

Keywords

Jurkat Cells, Receptor-CD3 Complex, Antigen, T-Cell, Receptors, Antigen, T-Cell, alpha-beta, Animals, Humans, Biological Evolution, Chickens, Dimerization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Average
bronze