Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Channelsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Channels
Article . 2014 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Channels
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Channels
Article . 2015
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
License: CC BY NC
Data sources: PubMed Central
versions View all 3 versions

The role of ryanodine receptor type 3 in a mouse model of Alzheimer disease

Authors: Liu, Jie; Supnet, Charlene; Sun, Suya; Zhang, Hua; Good, Levi; Popugaeva, Elena; Bezprozvanny, Ilya;

The role of ryanodine receptor type 3 in a mouse model of Alzheimer disease

Abstract

Dysregulated endoplasmic reticulum (ER) calcium (Ca(2+)) signaling is reported to play an important role in Alzheimer disease (AD) pathogenesis. The role of ER Ca(2+) release channels, the ryanodine receptors (RyanRs), has been extensivelys tudied in AD models and RyanR expression and activity are upregulated in the brains of various familial AD (FAD) models.The objective of this study was to utilize a genetic approach to evaluate the importance of RyanR type 3 (RyanR3) in the context of AD pathology.The expression of RyanR3 was also elevated in hippocampus of APPPS1 mice (Thy1-APPKM670/671NL, Thy1-PS1L166P).In young (≤ 3 mo) APPPS1 mice, the deletion of RyanR3 increased hippocampal neuronal network excitability and accelerated AD pathology, leading to mushroom spine loss and increased amyloid accumulation. In contrast, deletion of RyanR3 in older APPPS1 mice (≥ 6 mo) rescued network excitability and mushroom spine loss, reduced amyloid plaque load and reduced spontaneous seizure occurrence.Our data suggests a dual role for RyanR3 in AD pathology. In young AD neurons, RyanR3 protects AD neurons from synaptic and network dysfunction. In older AD neurons, increased RyanR3 activity contributes to pathology. These results imply that blockade of RyanR3 may be beneficial for those in the later stages of the disease, but RyanR activators may be beneficial when used prior to disease onset or in its initial stages. Caffeine is an activator of RyanRs and our results may help to explain a complex epidemiological connection between coffee consumption in mid-life and risk of AD development in old age.

Keywords

Mice, Knockout, Neurons, Amyloid beta-Peptides, Ryanodine Receptor Calcium Release Channel, Hippocampus, Mice, Inbred C57BL, Disease Models, Animal, Mice, Alzheimer Disease, Animals, Humans, Research Paper

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 10%
Top 10%
Green
gold