Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEMS Microbiology Le...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEMS Microbiology Letters
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Heme-regulated expression of two yeast acyl-CoA:sterol acyltransferases is involved in the specific response of sterol esterification to anaerobiosis

Authors: Martin, Valachovic; Vlasta, Klobucníková; Peter, Griac; Ivan, Hapala;

Heme-regulated expression of two yeast acyl-CoA:sterol acyltransferases is involved in the specific response of sterol esterification to anaerobiosis

Abstract

Sterol esterification in Saccharomyces cerevisiae is catalyzed by two acyl-CoA:sterol acyltransferases encoded by the genes ARE1 and ARE2. Using double mutants in the HEM1 gene and individual ARE genes we demonstrated that the relative contribution of these two enzymes to sterol esterification was dependent on cellular heme status. Observed changes in sterol esterification could be explained by a different effect of heme on the transcription of both genes: while the ARE1 transcript level was elevated in heme-deficient and anaerobic cells, the ARE2 gene transcript was more abundant in aerobic cells competent for heme synthesis. Our results indicate that transcriptional regulation of ARE genes by heme and specific substrate preferences of Are1p and Are2p may be involved in the adaptation of yeast sterol metabolism to hypoxia.

Keywords

Saccharomyces cerevisiae Proteins, Esterification, Transcription, Genetic, Heme, Saccharomyces cerevisiae, Oxygen, Sterols, Gene Expression Regulation, Fungal, Anaerobiosis, Acyltransferases, Sterol O-Acyltransferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Average
bronze