Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurogastroenterolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurogastroenterology & Motility
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Expression of NKCC2 in the rat gastrointestinal tract

Authors: H, Xue; S, Liu; T, Ji; W, Ren; X H, Zhang; L F, Zheng; J D, Wood; +1 Authors

Expression of NKCC2 in the rat gastrointestinal tract

Abstract

Abstract  NKCC2, an isoform of Na+–K+–2Cl− cotransporter, is principally present in the kidney and plays a critical role in salt reabsorption. Expression of NKCC2 has been found in the apical membrane of intestinal epithelial cells in a number of marine fish, however, details for expression in the mammalian gastrointestinal tract are lacking. RT‐PCR, Western blotting and immunohistochemistry were used to study the expression and localization of NKCC2 in the rat gastrointestinal tract. We found that mRNA transcripts, protein and immunoreactivity (IR) for NKCC2 were expressed in the stomach, small and large intestine of adult rats. NKCC2 IR was localized to the base of the gastric glands, intestinal epithelia, myenteric and submucosal plexuses. NKCC2 IR was expressed strongly in the apical membranes and weakly in the basolateral membranes of intestinal epithelial cells. In the enteric nervous system, NKCC2 IR was widely distributed and localized to enteric neurons with cholinergic, calretinin and nitrergic neuronal immunochemical codes in the myenteric plexus. It was localized to non‐cholinergic secretomotor neurons in the submucosal plexus. In conclusion, this study for the first time clearly detected the expression of NKCC2 in the gastrointestinal tract of a mammalian species. Expression of NKCC2 in gastrointestinal epithelial cells suggested that this cation chloride cotransporter might be involved in gastrointestinal ion transport. Expression of NKCC2 in enteric neurons might contribute to the accumulation of Cl− and a more depolarized ECl− in enteric neurons.

Related Organizations
Keywords

Male, Neurons, Reverse Transcriptase Polymerase Chain Reaction, Sodium-Potassium-Chloride Symporters, Blotting, Western, Immunohistochemistry, Enteric Nervous System, Rats, Gastrointestinal Tract, Rats, Sprague-Dawley, Animals, Solute Carrier Family 12, Member 1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Average
Top 10%