Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Trafficarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Traffic
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Traffic
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Traffic
Article . 2010
versions View all 2 versions

Regulation of the Yeast Formin Bni1p by the Actin‐Regulating Kinase Prk1p

Authors: Junxia, Wang; Suat Peng, Neo; Mingjie, Cai;

Regulation of the Yeast Formin Bni1p by the Actin‐Regulating Kinase Prk1p

Abstract

The formin family of proteins promotes the assembly of linear actin filaments in the cells of diverse eukaryotic organisms. The predominant formins in mammalian cells are self‐inhibited by an intramolecular interaction between two terminal domains and are activated by the binding of the Rho GTPases and other factors. In this study, we show that Bni1p, a formin required for the assembly of actin cables in budding yeast, is also regulated by an autoinhibitory mechanism and phosphorylation by the actin regulatory kinase Prk1p, and possibly Ark1p as well, plays a key role in unlocking the inhibition. Bni1p is phosphorylated by Prk1p at three [L/V/I]xxxxTG motifs in vitro, and the phosphorylation is sufficient to activate Bni1p by disrupting its intramolecular interaction. This finding extends the roles of Prk1p in the regulation of actin dynamics to be associated with both anterograde and retrograde transport pathways, i.e. exocytosis and endocytosis, in yeast.

Keywords

rho GTP-Binding Proteins, Amino Acid Motifs, Phosphotransferases, Eukaryota, Saccharomyces cerevisiae, Protein Serine-Threonine Kinases, Actins, Endocytosis, Protein Structure, Tertiary, Actin Cytoskeleton, Yeasts, Phosphorylation, Methenamine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
bronze