Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Sequential breakdown of 3-phosphorylated phosphoinositides is essential for the completion of macropinocytosis

Authors: Masashi, Maekawa; Shimpei, Terasaka; Yasuhiro, Mochizuki; Katsuhisa, Kawai; Yuka, Ikeda; Nobukazu, Araki; Edward Y, Skolnik; +2 Authors

Sequential breakdown of 3-phosphorylated phosphoinositides is essential for the completion of macropinocytosis

Abstract

Significance Macropinocytosis is a form of endocytosis that is accompanied by ruffling of plasma membrane and participates in a diverse range of pathophysiological processes, such as antigen uptake by immune cells and tumor growth. However, the molecular mechanism underlying this process is poorly understood. By exploiting the studies of fluid-phase endocytosis in Caenorhabditis elegans , we found that dephosphorylation of phosphoinositide PI(3)P is essential for macropinocytosis in mammalian cells. We also found that the sequential dephosphorylation of PI(3,4,5)P 3 → PI(3,4)P 2 → PI(3)P → PI at membrane ruffles is required for macropinocytosis. Identification of phosphoinositide phosphatases in the dephosphorylation cascade and a PI(3)P-sensitive K + channel as essential factors for macropinocytosis may provide the way to selectively control macropinocytosis among various endocytic pathways.

Keywords

Reverse Transcriptase Polymerase Chain Reaction, Protein Tyrosine Phosphatases, Non-Receptor, Phosphoric Monoester Hydrolases, Cell Line, Microscopy, Fluorescence, Phosphatidylinositol Phosphates, Microscopy, Electron, Scanning, Animals, Humans, Pinocytosis, RNA Interference, Phosphorylation, RNA, Small Interfering, Caenorhabditis elegans, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 1%
Top 10%
Top 10%
bronze