Motor-Coordinative and Cognitive Dysfunction Caused by Mutant TDP-43 Could Be Reversed by Inhibiting Its Mitochondrial Localization
Motor-Coordinative and Cognitive Dysfunction Caused by Mutant TDP-43 Could Be Reversed by Inhibiting Its Mitochondrial Localization
Dominant missense mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis (ALS), and the cytoplasmic accumulation of TDP-43 represents a pathological hallmark in ALS and frontotemporal lobar degeneration (FTD). Behavioral investigation of the transgenic mouse model expressing the disease-causing human TDP-43 M337V mutant (TDP-43M337V mice) is encumbered by premature death in homozygous transgenic mice and a reported lack of phenotype assessed by tail elevation and footprint in hemizygous transgenic mice. Here, using a battery of motor-coordinative and cognitive tests, we report robust motor-coordinative and cognitive deficits in hemizygous TDP-43M337V mice by 8 months of age. After 12 months of age, cortical neurons are significantly affected by the mild expression of mutant TDP-43, characterized by cytoplasmic TDP-43 mislocalization, mitochondrial dysfunction, and neuronal loss. Compared with age-matched non-transgenic mice, TDP-43M337V mice demonstrate a similar expression of total TDP-43 but higher levels of TDP-43 in mitochondria. Interestingly, a TDP-43 mitochondrial localization inhibitory peptide abolishes cytoplasmic TDP-43 accumulation, restores mitochondrial function, prevents neuronal loss, and alleviates motor-coordinative and cognitive deficits in adult hemizygous TDP-43M337V mice. Thus, this study suggests hemizygous TDP-43M337V mice as a useful animal model to study TDP-43 toxicity and further consolidates mitochondrial TDP-43 as a novel therapeutic target for TDP-43-linked neurodegenerative diseases.
- University Hospitals Cleveland Medical Center United States
- Case Western Reserve University United States
Neurons, Amyotrophic Lateral Sclerosis, Brain, Mice, Transgenic, Motor Activity, Peptide Fragments, Mitochondria, DNA-Binding Proteins, Mice, Protein Transport, Mutation, Animals, Cognitive Dysfunction, Muscle Strength, Locomotion, Psychomotor Performance
Neurons, Amyotrophic Lateral Sclerosis, Brain, Mice, Transgenic, Motor Activity, Peptide Fragments, Mitochondria, DNA-Binding Proteins, Mice, Protein Transport, Mutation, Animals, Cognitive Dysfunction, Muscle Strength, Locomotion, Psychomotor Performance
8 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).70 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
