Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Life Sciencesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Life Sciences
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Corticosterone suppresses the proliferation of BV2 microglia cells via glucocorticoid, but not mineralocorticoid receptor

Authors: Yoshihiko, Nakatani; Taku, Amano; Minoru, Tsuji; Hiroshi, Takeda;

Corticosterone suppresses the proliferation of BV2 microglia cells via glucocorticoid, but not mineralocorticoid receptor

Abstract

Corticosterone (CORT), which is often referred to as the stress hormone, is a well-known regulator of peripheral immune responses and also shows anti-inflammatory properties in the brain. Microglia play a key role in immune response and inflammation in the brain. However, it is still unclear how CORT affects microglia. In this study, we focused on the effects of CORT on the proliferation and survival of microglia using mouse microglia cell line BV2.We used WST-8 and LDH (lactate dehydrogenase) assays to check the effects of CORT for the proliferation and survival in BV2 microglia cells. We also analyzed the expression pattern of proteins which related to CORT signal cascades using western blotting analysis.Under treatment with 0.1, 1 and 10μM CORT for 24h, the BV2 proliferation rate decreased to 83, 77 and 70% of that in the control. Moreover, this inhibition was blocked by treatment with mifepristone, a glucocorticoid receptor (GR) antagonist, but not by spironolactone, a mineralocorticoid receptor (MR) antagonist. Moreover, an LDH assay showed that CORT was dose-dependently cytotoxic toward BV2 microglia cells and this cytotoxicity was partially abolished by treatment with mifepristone. In addition, treatment with CORT resulted in the translocation of GR, but not MR, from the cytosol to the nucleus.Our findings suggested that CORT suppresses the proliferation of BV2 microglia cells accompanied with a cytotoxic effect that is induced by the formation of a CORT-GR complex.

Keywords

Membrane Potential, Mitochondrial, L-Lactate Dehydrogenase, Anti-Inflammatory Agents, Spironolactone, Cell Line, Mice, Mifepristone, Receptors, Glucocorticoid, Receptors, Mineralocorticoid, Animals, Microglia, Corticosterone, Cell Proliferation, Mineralocorticoid Receptor Antagonists

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Average