Temporal and spatial expression of osteoactivin during fracture repair
doi: 10.1002/jcb.22702
pmid: 20506259
Temporal and spatial expression of osteoactivin during fracture repair
AbstractWe previously identified osteoactivin (OA) as a novel secreted osteogenic factor with high expression in developing long bones and calvaria, and that stimulates osteoblast differentiation and matrix mineralization in vitro. In this study, we report on OA mRNA and protein expression in intact long bone and growth plate, and in fracture calluses collected at several time points up to 21 days post‐fracture (PF). OA mRNA and protein were highly expressed in osteoblasts localized in the metaphysis of intact tibia, and in hypertrophic chondrocytes localized in growth plate, findings assessed by in situ hybridization and immunohistochemistry, respectively. Using a rat fracture model, Northern blot analysis showed that expression of OA mRNA was significantly higher in day‐3 and day‐10 PF calluses than in intact rat femurs. Using in situ hybridization, we examined OA mRNA expression during fracture healing and found that OA was temporally regulated, with positive signals seen as early as day‐3 PF, reaching a maximal intensity at day‐10 PF, and finally declining at day‐21 PF. At day‐5 PF, which correlates with chondrogenesis, OA mRNA levels were significantly higher in the soft callus than in intact femurs. Similarly, we detected high OA protein immunoexpression throughout the reparative phase of the hard callus compared to intact femurs. Interestingly, the secreted OA protein was also detected within the newly made cartilage matrix and osteoid tissue. Taken together, these results suggest the possibility that OA plays an important role in bone formation and serves as a positive regulator of fracture healing. J. Cell. Biochem. 111: 295–309, 2010. © 2010 Wiley‐Liss, Inc.
- Ramapo College United States
- Stony Brook University United States
- Temple University United States
- Temple University Hospital United States
Fracture Healing, Membrane Glycoproteins, Osteoblasts, Time Factors, Animals, Femur, Growth Plate, RNA, Messenger, Eye Proteins, Chondrogenesis, Rats
Fracture Healing, Membrane Glycoproteins, Osteoblasts, Time Factors, Animals, Femur, Growth Plate, RNA, Messenger, Eye Proteins, Chondrogenesis, Rats
7 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).39 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
