Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Opinion in C...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Opinion in Cell Biology
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Crosstalk in gene expression: coupling and co-regulation of rDNA transcription, pre-ribosome assembly and pre-rRNA processing

Authors: Sander Granneman; Susan J. Baserga;

Crosstalk in gene expression: coupling and co-regulation of rDNA transcription, pre-ribosome assembly and pre-rRNA processing

Abstract

Ribosomes, the large RNPs that translate mRNA into protein in the cytoplasm of eukaryotic cells, are synthesized in a subcompartment of the nucleus, the nucleolus. There, transcription by Pol I yields a pre-rRNA which is modified, cleaved and assembled with ribosomal proteins to make functional ribosomes. Previously, rRNA transcription and pre-rRNA cleavage in eukaryotes were considered to be separable steps in gene expression. However, recent findings suggest that these two steps in gene expression can be concurrent and are co-regulated. Unexpectedly, optimal rDNA transcription requires the presence of a defined subset of components of the pre-rRNA processing machinery.

Related Organizations
Keywords

Transcription, Genetic, Genes, rRNA, Saccharomyces cerevisiae, Models, Biological, Gene Expression Regulation, RNA Polymerase I, RNA, Ribosomal, Ribonucleoproteins, Small Nucleolar, Animals, RNA Processing, Post-Transcriptional, Ribosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 10%
Top 10%
Top 10%