Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Padua research Archi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Brain Research
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions

Mutation of OPA1 gene causes deafness by affecting function of auditory nerve terminals

Authors: HUANG TS; SANTARELLI, ROSAMARIA; STARR A.;

Mutation of OPA1 gene causes deafness by affecting function of auditory nerve terminals

Abstract

Autosomal dominant optic atrophy (DOA) is a retinal neuronal degenerative disease characterized by a progressive bilateral visual loss. We report on two affected members of a family with dominantly inherited neuropathy of both optic and auditory nerves expressed by impaired visual acuity, moderate pure tone hearing loss, and marked loss of speech perception. We investigated cochlear abnormalities accompanying the hearing loss and the effects of cochlear implantation. We sequenced OPA1 gene and recorded cochlear receptor and neural potentials before cochlear implantation. Genetic analysis identified R445H mutation in OPA1 gene. Audiological studies showed preserved cochlear receptor outer hair cell activities (otoacoustic emissions) and absent or abnormally delayed auditory brainstem responses (ABRs). Trans-tympanic electrocochleography (ECochG) showed prolonged low amplitude negative potentials without auditory nerve compound action potentials. The latency of onset of the cochlear potentials was within the normal range found for inner hair cell summating receptor potentials. The duration of the negative potential was reduced to normal during rapid stimulation consistent with adaptation of neural sources generating prolonged cochlear potentials. Both subjects had cochlear implants placed with restoration of hearing thresholds, speech perception, and synchronous activity in auditory brainstem pathways. The results suggest that deafness accompanying this OPA1 mutation is due to altered function of terminal unmyelinated portions of auditory nerve. Electrical stimulation of the cochlea activated proximal myelinated portions of auditory nerve to restore hearing.

Keywords

Auditory Pathways, Action Potentials, Neurodegenerative, Optic neuropathy, Auditory neuropathy, GTP Phosphohydrolases, Optic Nerve Diseases, 2.1 Biological and endogenous factors, Psychology, Aetiology, Child, Evoked Potentials, Auditory, Assistive Technology, Rehabilitation, Ear, Middle Aged, Optic neuropathy; Auditory neuropathy; Hearing loss; Electrochleography; Cochlear implants, Cochlea, Neurological, Auditory Perception, Audiometry, Pure-Tone, Cognitive Sciences, Female, Adult, Genotype, Bioengineering, Audiometry, Clinical Research, Genetics, Evoked Potentials, Auditory, Brain Stem, Humans, Electrochleography, Hearing Loss, Eye Disease and Disorders of Vision, Cochlear Nerve, Neurology & Neurosurgery, Evoked Response, Neurosciences, Auditory Threshold, Hearing loss, Audiometry, Evoked Response, Cochlear Implants, Acoustic Stimulation, Mutation, Cochlear implants, Pure-Tone, Brain Stem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 10%
Top 10%
Top 10%
Green
hybrid