Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the National Academy of Sciences
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis

Authors: Taniguchi N; Caramés B; Ronfani L; Ulmer U; Komiya S; BIANCHI , MARCO EMILIO; Lotz M.;

Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis

Abstract

Osteoarthritis (OA) is the most common joint disease and typically begins with an aging-related disruption of the articular cartilage surface. Mechanisms leading to the aging-related cartilage surface degeneration remain to be determined. Here, we demonstrate that nonhistone chromatin protein high-mobility group box (HMGB) protein 2 is uniquely expressed in the superficial zone (SZ) of human articular cartilage. In human and murine cartilage, there is an aging-related loss of HMGB2 expression, ultimately leading to its complete absence. Mice genetically deficient in HMGB2 ( Hmgb2 −/− ) show earlier onset of and more severe OA. This is associated with a profound reduction in cartilage cellularity attributable to increased cell death. These cellular changes precede glycosaminoglycan depletion and progressive cartilage erosions. Chondrocytes from Hmgb2 −/− mice are more susceptible to apoptosis induction in vitro . In conclusion, HMGB2 is a transcriptional regulator specifically expressed in the SZ of human articular cartilage and supports chondrocyte survival. Aging is associated with a loss of HMGB2 expression and reduced cellularity, and this contributes to the development of OA.

Country
Italy
Keywords

Cartilage, Articular, Aging, Cell Survival, Apoptosis, Chromatin, Matrix Metalloproteinases, Mice, Protein Transport, Gene Expression Regulation, Osteoarthritis, Animals, HMGB2 Protein, Humans, Joints, Proteoglycans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    127
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
127
Top 1%
Top 10%
Top 10%
bronze