Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.biorxiv....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.biorxiv.org/conten...
Article
License: CC BY
Data sources: UnpayWall
https://doi.org/10.1101/2021.0...
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions

γ-TuRCs are required for asymmetric microtubule nucleation from the somatic Golgi of Drosophila neurons

Authors: Amrita Mukherjee; Paul T. Conduit;

γ-TuRCs are required for asymmetric microtubule nucleation from the somatic Golgi of Drosophila neurons

Abstract

AbstractMicrotubules are polarised polymers nucleated by multi-protein γ-tubulin ring complexes (γ-TuRCs). Within neurons, microtubule polarity is plus-end-out in axons and mixed or minus-end-out in dendrites. Previously we showed that within the soma of Drosophila sensory neurons γ-tubulin localises asymmetrically to Golgi stacks, Golgi-derived microtubules grow asymmetrically towards the axon, and growing microtubule plus-ends are guided towards the axon and restricted from entering dendrite in a Kinesin-2-dependent manner (Mukerjee et al., 2020). Here we show that depleting γ-TuRCs perturbs the direction of microtubule growth from the Golgi stacks, consistent with a model for asymmetric microtubule nucleation involving γ-TuRCs and other nucleation-promoting factors. We also directly observe microtubule turning along microtubule bundles and show that depleting APC, proposed to link Kinesin-2 to plus ends, reduces microtubule turning and increases plus end growth into dendrites. These results support a model of asymmetric nucleation and guidance within the neuronal soma that helps establish and maintain overall microtubule polarity.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average