Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Deacetylation of the mitotic checkpoint protein BubR1 at lysine 250 by SIRT2 and subsequent effects on BubR1 degradation during the prometaphase/anaphase transition

Authors: Tomohisa, Suematsu; Yanze, Li; Hirotada, Kojima; Koichi, Nakajima; Mitsuo, Oshimura; Toshiaki, Inoue;

Deacetylation of the mitotic checkpoint protein BubR1 at lysine 250 by SIRT2 and subsequent effects on BubR1 degradation during the prometaphase/anaphase transition

Abstract

Mitotic catastrophe, a form of cell death that occurs during mitosis and after mitotic slippage to a tetraploid state, plays an important role in the efficacy of cancer cell killing by microtubule inhibitors. Prolonged mitotic arrest at the spindle assembly checkpoint (SAC) is a well-known requirement for mitotic catastrophe and, thus, for conferring sensitivity to microtubule inhibitors. We previously reported that downregulation of SIRT2, a member of the sirtuin family of NAD+-dependent deacetylases, confers resistance to microtubule inhibitors by abnormally prolonging mitotic arrest and thus compromising the cell death pathway after mitotic slippage. Thus, turning off SAC activation after a defined period is an additional requirement for efficient post-slippage death. Here, we investigated whether SIRT2 deacetylates BubR1, which is a core component of the SAC; acetylation of BubR1 at lysine 250 (K250) during prometaphase inhibits its APC/C-dependent proteolysis and thus regulates timing in anaphase entry. We showed that SIRT2 deacetylates BubR1 K250 both in vitro and in vivo. We also found that SIRT2 knockdown leads to increased levels of BubR1 acetylation at prometaphase; however, this increase is not substantial to elevate the levels of total BubR1 or delay the transition from prometaphase to anaphase. The present study shows that SIRT2 is a deacetylase for BubR1 K250, although the abnormally prolonged SAC activation observed in SIRT2 knockdown cells is not accompanied by a change in BubR1 levels or by delayed progression from prometaphase to anaphase.

Keywords

Prometaphase, Sirtuin 2, Gene Knockdown Techniques, Proteolysis, Humans, Acetylation, Protein Serine-Threonine Kinases, Anaphase, Cell Line

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
Related to Research communities
Cancer Research