Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Regulatory Peptidesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Regulatory Peptides
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Alterations within the endogenous opioid system in mice with targeted deletion of the neutral endopeptidase (‘enkephalinase’) gene

Authors: H S, Fischer; G, Zernig; R, Schuligoi; K A, Miczek; K F, Hauser; C, Gerard; A, Saria;

Alterations within the endogenous opioid system in mice with targeted deletion of the neutral endopeptidase (‘enkephalinase’) gene

Abstract

The biological inactivation of enkephalins by neutral endopeptidase (enkephalinase, NEP, EC3.4.24.11) represents a major mechanism for the termination of enkephalinergic signalling in brain. A pharmacological blockade of NEP-activity enhances extracellular enkephalin concentrations and induces opioid-dependent analgesia. Recently, knockout mice lacking the enzyme NEP have been developed [Lu et al., J. Exp. Med. 1995;181:2271-2275]. The present study investigates the functional consequences and biochemical compensatory strategies of a systemic elimination of NEP activity in these knockout mice. Using biochemical and behavioural tests we found that the lack of NEP activity in brain is not compensated by enhanced activities of alternative enkephalin-degrading enzymes. Also no change in enkephalin biosynthesis was detectable by in situ methods quantifying striatal proenkephalin-mRNA levels in NEP-deficient mice compared with wildtype. Only a 21% reduction of mu receptor density in crude brain homogenates of NEP knockout mice was observed, while delta- and kappa-opioid receptor densities were unchanged. This receptor downregulation was also confirmed functionally in the hot-plate paradigm. NEP knockouts developed normally, but showed enhanced aggressive behaviour in the resident-intruder paradigm, and altered locomotor activity as assessed in the photobeam system. Thus, although NEP plays a substantial role in enkephalinergic neurotransmission, the biochemical adaptations within the opioid system of NEP-deficient mice are of only modest nature.

Related Organizations
Keywords

Mice, Knockout, Behavior, Animal, Brain, Down-Regulation, Enkephalins, Motor Activity, Aggression, Mice, Opioid Peptides, Receptors, Opioid, Animals, Neprilysin, RNA, Messenger, Protein Precursors, Gene Deletion, In Situ Hybridization, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Average