Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Communication...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Communications
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Communications
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Communications
Article . 2020
Data sources: DOAJ
versions View all 4 versions

The RNA quality control pathway nonsense-mediated mRNA decay targets cellular and viral RNAs to restrict KSHV

Authors: Yang Zhao; Xiang Ye; Myriam Shehata; William Dunker; Zhihang Xie; John Karijolich;

The RNA quality control pathway nonsense-mediated mRNA decay targets cellular and viral RNAs to restrict KSHV

Abstract

AbstractNonsense-mediated mRNA decay (NMD) is an evolutionarily conserved RNA decay mechanism that has emerged as a potent cell-intrinsic restriction mechanism of retroviruses and positive-strand RNA viruses. However, whether NMD is capable of restricting DNA viruses is not known. The DNA virus Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi’s sarcoma and primary effusion lymphoma (PEL). Here, we demonstrate that NMD restricts KSHV lytic reactivation. Leveraging high-throughput transcriptomics we identify NMD targets transcriptome-wide in PEL cells and identify host and viral RNAs as substrates. Moreover, we identified an NMD-regulated link between activation of the unfolded protein response and transcriptional activation of the main KSHV transcription factor RTA, itself an NMD target. Collectively, our study describes an intricate relationship between cellular targets of an RNA quality control pathway and KSHV lytic gene expression, and demonstrates that NMD can function as a cell intrinsic restriction mechanism acting upon DNA viruses.

Keywords

Gene Expression Regulation, Viral, Transcriptional Activation, Science, Q, Article, Immediate-Early Proteins, Nonsense Mediated mRNA Decay, Virus Latency, HEK293 Cells, Cell Line, Tumor, Lymphoma, Primary Effusion, Herpesvirus 8, Human, Host-Pathogen Interactions, Trans-Activators, Unfolded Protein Response, Humans, RNA, Viral, Virus Activation, RNA, Messenger, RNA-Seq, Sarcoma, Kaposi

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Average
Top 10%
Green
gold