Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Opinion in P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Opinion in Plant Biology
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Receptor-like protein kinases: the keys to response

Authors: Erin R, Morris; John C, Walker;

Receptor-like protein kinases: the keys to response

Abstract

Plants are constantly challenged by changes in temperature, light, nutrient conditions, and exposure to pathogens and by other fluctuations in their environment. The molecular basis of how plants respond to these external factors is an active area of investigation. Plant cells often use receptors at the cell surface to sense environmental changes, and then transduce this information via activated signaling pathways to trigger adaptive responses. In Arabidopsis, the receptor-like protein kinase (RLK) gene family contains more than 600 members, many of which are likely to respond to the external challenges presented by an ever-changing environment. RLKs are involved in hormonal response pathways, cell differentiation, plant growth and development, self-incompatibility, and symbiont and pathogen recognition.

Related Organizations
Keywords

Arabidopsis, Peptides, Protein Kinases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    162
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
162
Top 10%
Top 10%
Top 10%