Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The American Journal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The American Journal of Human Genetics
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The American Journal of Human Genetics
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The American Journal of Human Genetics
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Somatic Mutations throughout the Entire Mitochondrial Genome Are Associated with Elevated PSA Levels in Prostate Cancer Patients

Authors: Kloss-Brandstätter, Anita; Schäfer, Georg; Erhart, Gertraud; Hüttenhofer, Alexander; Coassin, Stefan; Seifarth, Christof; Summerer, Monika; +3 Authors

Somatic Mutations throughout the Entire Mitochondrial Genome Are Associated with Elevated PSA Levels in Prostate Cancer Patients

Abstract

The genetic etiology of prostate cancer, the most common form of male cancer in western countries, is complex and the interplay of disease genes with environmental factors is far from being understood. Studies on somatic mitochondrial DNA (mtDNA) mutations have become an important aspect of cancer research because these mutations might have functional consequences and/or might serve as biosensors for tumor detection and progression. We sequenced the entire mitochondrial genome (16,569 bp) from 30 prospectively collected pairs of macrodissected cancerous and benign cells from prostate cancer patients and compared their genetic variability. Given recent concerns regarding the authenticity of newly discovered mtDNA mutations, we implemented a high-quality procedure for mtDNA whole-genome sequencing. In addition, the mitochondrial genes MT-CO2, MT-CO3, MT-ATP6, and MT-ND6 were sequenced in further 35 paired samples from prostate cancer patients. We identified a total of 41 somatic mutations in 22 out of 30 patients: the majority of these mutations have not previously been observed in the human phylogeny. The presence of somatic mutations in transfer RNAs (tRNAs) was found to be associated with elevated PSA levels (14.25 ± 5.44 versus 7.15 ± 4.32 ng/ml; p = 0.004). The level and degree of heteroplasmy increased with increasing tumor activity. In summary, somatic mutations in the mitochondrial genome are frequent events in prostate cancer. Mutations mapping to mitochondrial tRNAs, ribosomal RNAs, and protein coding genes might impair processes that occur within the mitochondrial compartment (e.g., transcription, RNA processing, and translation) and might finally affect oxidative phosphorylation.

Keywords

Male, RNA, Transfer, Mutation, Genetics, Humans, Nucleic Acid Conformation, Prostatic Neoplasms, Genetics(clinical), Prospective Studies, Prostate-Specific Antigen, DNA, Mitochondrial, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 10%
Top 10%
Top 10%
hybrid
Related to Research communities
Cancer Research