Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Thrombosi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thrombosis and Haemostasis
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions

Enhanced blood coagulation and fibrinolysis in mice lacking histidine‐rich glycoprotein (HRG)

Authors: N, Tsuchida-Straeten; S, Ensslen; C, Schäfer; M, Wöltje; B, Denecke; M, Moser; S, Gräber; +3 Authors

Enhanced blood coagulation and fibrinolysis in mice lacking histidine‐rich glycoprotein (HRG)

Abstract

Histidine-rich glycoprotein (HRG) is a serum protein belonging to the cystatin superfamily. HRG may play a regulatory role in hemostasis and innate immunity. However, this role is uncertain because of a lack of rigorous testing in an animal model. We generated mice lacking the translation start point of exon 1 of the Hrg gene, effectively resulting in a null mutation (Hrg-/-). The mice were viable and fertile but had no HRG in their blood. Antithrombin activity in the plasma of Hrg-/- mice was higher than in the plasma of heterozygous Hrg+/- or wild-type Hrg+/+ mice. The prothrombin time was shorter in Hrg-/- mice than in Hrg+/- and Hrg+/+ mice. Bleeding time after tail tip amputation in Hrg-/- mice was shorter than in Hrg+/+ mice. The spontaneous fibrinolytic activity in clotted blood of Hrg-/- mice was higher than in Hrg+/+ mice. These findings suggest that HRG plays a role as both an anticoagulant and an antifibrinolytic modifier, and may regulate platelet function in vivo.

Related Organizations
Keywords

Blood Platelets, Heterozygote, Wound Healing, Bleeding Time, Genotype, Models, Genetic, Fibrinolysis, Stem Cells, Genetic Vectors, Molecular Sequence Data, Proteins, Mice, Transgenic, Exons, Blotting, Southern, Mice, Animals, Cloning, Molecular, Blood Coagulation, Protein Binding, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 10%
Top 10%
Top 10%
bronze