Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Experimental Eye Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Eye Research
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Protein–protein interactions involving congenital cataract T5P γC-crystallin mutant: A confocal fluorescence microscopy study

Authors: Bing-Fen, Liu; Shuhua, Song; Mark, Hanson; Jack J-N, Liang;

Protein–protein interactions involving congenital cataract T5P γC-crystallin mutant: A confocal fluorescence microscopy study

Abstract

The human lens crystallin gene CRYGC T5P is associated with Coppock-like cataract and has a phenotype of a dust-like opacity of the fetal lens nucleus and deep cortical region. Previous in vitro mutation studies indicate that the protein has changed conformation, solubility, and stability, which may make it susceptible to aggregation, as seen in cataractous lens and cell culture expression. To investigate the mechanisms leading to these events, we studied protein-protein interactions using confocal fluorescence resonance energy transfer (FRET) microscopy. The method detects protein-protein interactions in the natural environment of living cells. Crystallin genes (CRYGC T5P, CRYGC, and CRYAA) were fused to either the green fluorescence protein (GFP) or red fluorescence protein (DsRED or RFP) vector. Each of the following GFP-RFP (donor-acceptor) plasmid pairs was cotransfected into HeLa cells: gammaC-gammaC, gammaC-gammaCT5P, gammaCT5P-gammaCT5P, alphaA-gammaC, and alphaA-gammaCT5P. After culture, confocal fluorescence cell images were taken. Protein-protein interactions in the form of net FRET were evaluated. The confocal fluorescence images show that cells expressing T5P gammaC-crystallin contain many protein aggregates, but cells co-expressing with either gammaC- or alphaA-crystallin reduce the aggregation considerably. FRET determination indicates that gammaCT5P-gammaCT5P shows less protein-protein interaction than either gammaC-gammaC or gammaC-gammaCT5P. Cotransfection with alphaA-crystallin (alphaA-gammaC or alphaA-T5PgammaC) increases nFRET compared with gammaC-gammaC or gammaC-T5PgammaC. Our results demonstrate that T5P gammaC-crystallin shows more protein aggregates and less protein-protein interaction than WT gammaC-crystallin. Chaperone alphaA-crystallin can rescue T5P gammaC-crystallin from aggregation through increased protein interaction. The formation of congenital cataract may be due to reduced protein-protein interactions and increased aggregation from an insufficient amount of alpha-crystallin for protection.

Related Organizations
Keywords

Microscopy, Confocal, Transfection, alpha-Crystallin A Chain, Cataract, Microscopy, Fluorescence, Mutation, Image Processing, Computer-Assisted, Humans, gamma-Crystallins, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Average
bronze