Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 1992 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
Molecular and Cellular Biology
Article . 1992 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Regulation of Yeast COX6 by the General Transcription Factor ABF1 and Separate HAP2- and Heme-Responsive Elements

Authors: John D. Trawick; N Kraut; F R Simon; Robert O. Poyton;

Regulation of Yeast COX6 by the General Transcription Factor ABF1 and Separate HAP2- and Heme-Responsive Elements

Abstract

Transcription of the Saccharomyces cerevisiae COX6 gene is regulated by heme and carbon source. It is also affected by the HAP2/3/4 transcription factor complex and by SNF1 and SSN6. Previously, we have shown that most of this regulation is mediated through UAS6, an 84-bp upstream activation segment of the COX6 promoter. In this study, by using linker scanning mutagenesis and protein binding assays, we have identified three elements within UAS6 and one element downstream of it that are important. Two of these, HDS1 (heme-dependent site 1; between -269 and -251 bp) and HDS2 (between -228 and -220 bp), mediate regulation of COX6 by heme. Both act negatively. The other two elements, domain 2 (between -279 and -269 bp) and domain 1 (between -302 and -281 bp), act positively. Domain 2 is required for optimal transcription in cells grown in repressing but not derepressing carbon sources. Domain 1 is essential for transcription per se in cells grown on repressing carbon sources, is required for optimal transcription in cells grown on a derepressing carbon source, is sufficient for glucose repression-derepression, and is the element of UAS6 at which HAP2 affects COX6 transcription. This element contains the major protein binding sites within UAS6. It has consensus binding sequences for ABF1 and HAP2. Gel mobility shift experiments show that domain 1 binds ABF1 and forms different numbers of DNA-protein complexes in extracts from cells grown in repressing or derepressing carbon sources. In contrast, gel mobility shift experiments have failed to reveal that HAP2 or HAP3 binds to domain 1 or that hap3 mutations affect the complexes bound to it. Together, these findings permit the following conclusions: COX6 transcription is regulated both positively and negatively; heme and carbon source exert their effects through different sites; domain 1 is absolutely essential for transcription on repressing carbon sources; ABF1 is a major component in the regulation of COX6 transcription; and the HAP2/3/4 complex most likely affects COX6 transcription indirectly.

Keywords

Saccharomyces cerevisiae Proteins, Base Sequence, Transcription, Genetic, Recombinant Fusion Proteins, Molecular Sequence Data, Heme, Saccharomyces cerevisiae, Gene Expression Regulation, Enzymologic, DNA-Binding Proteins, Electron Transport Complex IV, Fungal Proteins, Kinetics, Mutagenesis, Insertional, CCAAT-Binding Factor, Oligodeoxyribonucleotides, Gene Expression Regulation, Fungal, DNA, Fungal, Promoter Regions, Genetic, Plasmids, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Average
Top 10%
Top 10%
bronze