Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Plant Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Plant Biology
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Plant Biology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2018
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Plant Biology
Article . 2018
Data sources: DOAJ
versions View all 4 versions

OsPHR3 affects the traits governing nitrogen homeostasis in rice

Authors: Yafei Sun; Wenzhen Luo; Ajay Jain; Lu Liu; Hao Ai; Xiuli Liu; Bing Feng; +4 Authors

OsPHR3 affects the traits governing nitrogen homeostasis in rice

Abstract

Phosphate (Pi) and Nitrogen (N) are essential macronutrients required for plant growth and development. In Arabidopsis thaliana (Arabidopsis), the transcription factor PHR1 acts as a Pi central regulator. PHL1 is a homolog of PHR1 and also plays a role in maintaining Pi homeostasis. In rice (Oryza sativa), OsPHR1-4 are the orthologs of PHR1 and have been implicated in regulating sensing and signaling cascades governing Pi homeostasis.Here the role of OsPHR3 was examined in regulating the homeostasis of N under different Pi regimes. Deficiencies of different variants of N exerted attenuating effects on the relative expression levels of OsPHR3 in a tissue-specific manner. For the functional characterization of OsPHR3, its Tos17 insertion homozygous mutants i.e., osphr3-1, osphr3-2, and osphr3-3 were compared with the wild-type for various morphophysiological and molecular traits during vegetative (hydroponics with different regimes of N variants) and reproductive (pot soil) growth phases. During vegetative growth phase, compared with the wild-type, OsPHR3 mutants showed significant variations in the adventitious root development, influx rates of 15N-NO3- and 15N-NH4+, concentrations of total N, NO3- and NH4+ in different tissues, and the relative expression levels of OsNRT1.1a, OsNRT2.4, OsAMT1;1, OsNia1 and OsNia2. The effects of the mutation in OsPHR3 was also explicit on the seed-set and grain yield during growth in a pot soil. Although Pi deficiency affected total N and NO3- concentration, the lateral root development and the relative expression levels of some of the NO3- and NH4+ transporter genes, its availability did not exert any notable regulatory influences on the traits governing N homeostasis.OsPHR3 plays a pivotal role in regulating the homeostasis of N independent of Pi availability.

Keywords

Nitrogen, OsPHR3, Botany, Arabidopsis, Phosphate, Oryza, Phosphates, Pi availability, Nitrogen variants, Phenotype, QK1-989, Mutation, Seeds, Homeostasis, Rice, Research Article, Plant Proteins, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
Green
gold