Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2009 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.1184/r1/...
Other literature type . 2009
Data sources: Datacite
Development
Article . 2009
versions View all 5 versions

A novel role for an APC2-Diaphanous complex in regulating actin organization inDrosophila

Authors: Rebecca L, Webb; Meng-Ning, Zhou; Brooke M, McCartney;

A novel role for an APC2-Diaphanous complex in regulating actin organization inDrosophila

Abstract

The rearrangement of cytoskeletal elements is essential for many cellular processes. The tumor suppressor Adenomatous polyposis coli (APC) affects the function of microtubules and actin, but the mechanisms by which it does so are not well understood. Here we report that Drosophila syncytial embryos null for Apc2 display defects in the formation and extension of pseudocleavage furrows, which are cortical actin structures important for mitotic fidelity in early embryos. Furthermore, we show that the formin Diaphanous (DIA) functions with APC2 in this process. Colocalization of APC2 and DIA peaks during furrow extension, and localization of APC2 to furrows is DIA-dependent. Furthermore, APC2 binds DIA directly through a region of APC2 not previously shown to interact with DIA-related formins. Consistent with these results, reduction of dia enhances actin defects in Apc2 mutant embryos. Thus, an APC2-DIA complex appears crucial for actin furrow extension in the syncytial embryo. Interestingly, EB1, a microtubule +TIP and reported partner of vertebrate APC and DIA1, may not function with APC2 and DIA in furrow extension. Finally, whereas DIA-related formins are activated by Rho family GTPases, our data suggest that the APC2-DIA complex might be independent of RHOGEF2 and RHO1. Furthermore,although microtubules play a role in furrow extension, our analysis suggests that APC2 and DIA function in a novel complex that affects actin directly,rather than through an effect on microtubules.

Related Organizations
Keywords

rho GTP-Binding Proteins, Tumor Suppressor Proteins, Formins, Gene Expression Regulation, Developmental, Cell Cycle Proteins, Actins, Animals, Genetically Modified, Drosophila melanogaster, FOS: Biological sciences, Mutation, Animals, Drosophila Proteins, Carrier Proteins, 69999 Biological Sciences not elsewhere classified, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
bronze