Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research@WURarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research@WUR
Article . 2010
Data sources: Research@WUR
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PROTOPLASMA
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
License: CC BY NC
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PROTOPLASMA
Article . 2009 . Peer-reviewed
Data sources: Crossref
PROTOPLASMA
Article . 2010
versions View all 5 versions

CLE peptide signaling during plant development

Authors: Wang, G.; Fiers, M.A.;

CLE peptide signaling during plant development

Abstract

Peptide signaling in plants is a rapid developing area of research which focuses on so called peptide hormones. These signaling molecules are utilized for inter-cellular communication in different developmental processes, beside the usage of the more well-known phytohormones. Probably the best studied peptide ligands in plants are the CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR)-related (CLE) proteins. This family of signaling polypeptides is comprised of 32 members in Arabidopsis and, with the exception of the presence of related proteins in some parasitic worms, is restricted to the plant kingdom. CLV3 is one of the founding CLE genes and is involved in stem cell niche maintenance in apical meristems during plant development. While the CLV signaling pathway is well characterized with the identification of three receptors and a stem-cell-promoting transcription factor as target, the functioning of other family members is not or poorly understood. The recent discoveries of a new type of receptor involved in CLV signaling and a functional pathway for CLE40 in root development mark the rapid progress that is made in the area of CLE peptide signaling. This review gives an overview how CLE peptides are used as signaling molecules, and how they are involved in cell-to-cell communication in concert with different known and unknown receptors in a range of developmental processes during plant development.

Keywords

Nematoda, Meristem, Molecular Sequence Data, protein-kinase, Arabidopsis, Plant Development, Plant Science, Review Article, Protein Sorting Signals, Genes, Plant, Models, Biological, anther development, Gene Expression Regulation, Plant, Animals, Amino Acid Sequence, parasitic nematode, Plant Proteins, shoot apical meristem, Sequence Homology, Amino Acid, of-function phenotypes, Arabidopsis Proteins, arabidopsis erecta gene, root-meristem, Gene Expression Regulation, Developmental, Cell Biology, Plants, receptor-like kinase, stem-cell fate, organ development, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 10%
Top 10%
Top 10%
Green
hybrid