Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Compa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Comparative Neurology
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Mechanisms of Postecdysis‐Associated Programmed Cell Death of Peptidergic Neurons in Drosophila melanogaster

Authors: Gyunghee G, Lee; Keiko, Kikuno; Sudershana, Nair; Jae H, Park;

Mechanisms of Postecdysis‐Associated Programmed Cell Death of Peptidergic Neurons in Drosophila melanogaster

Abstract

ABSTRACTCrustacean cardioactive peptide (CCAP)‐expressing neurons undergo programmed cell death (PCD) within 24 hours after adult eclosion. A subset of the doomed CCAP neurons in the ventral nerve cord also expressed the neuropeptide bursicon and thus are referred to as bursCCAP neurons. In this study, we undertook comprehensive genetic and transgenic analyses to dissect the PCD mechanisms of bursCCAP neurons. Expression of a versatile caspase inhibitor, p35, blocked PCD of bursCCAP neurons, suggesting caspase‐dependent apoptosis. Further genetic analyses showed that Dronc/Dark and Drice are key caspases, but they are not sufficient to carry out the PCD fully. We did not find a role for other known caspases, Strica, Dredd, Damm, or Decay. Of interest, Dcp‐1 is required not for the death of bursCCAP neurons per se but for the removal of neural projections. DIAP1 is an important survival factor that inhibits premature death of bursCCAP neurons. We found that grim functions as a principal death inducer, whereas other death genes, hid, reaper, and sickle, show no endogenous function. Taken together with other studies, our work supports the role of grim as a major death inducer particularly for the removal of obsolete larval neurons during CNS metamorphosis. Results from the ectopic expression of the mutant grim lacking either N‐terminal IBM or internal GH3 domain indicated that both domains are necessary to induce CCAP cell death. J. Comp. Neurol. 521:3972–3991, 2013. © 2013 Wiley Periodicals, Inc.

Keywords

Animals, Genetically Modified, Neurons, Drosophila melanogaster, Cell Death, Neuropeptides, Animals, Drosophila Proteins, Inhibitor of Apoptosis Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Average
Top 10%