Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2012
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2012 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Inner Nuclear Envelope Proteins SUN1 and SUN2 Play a Prominent Role in the DNA Damage Response

Authors: Lei, Kai; Zhu, Xiaoqiang; Xu, Rener; Shao, Chunlin; Xu, Tian; Zhuang, Yuan; Han, Min;

Inner Nuclear Envelope Proteins SUN1 and SUN2 Play a Prominent Role in the DNA Damage Response

Abstract

The DNA damage response (DDR) and DNA repair are critical for maintaining genomic stability and evading many human diseases. Recent findings indicate that accumulation of SUN1, a nuclear envelope (NE) protein, is a significant pathogenic event in Emery-Dreifuss muscular dystrophy and Hutchinson-Gilford progeria syndrome, both caused by mutations in LMNA. However, roles of mammalian SUN proteins in mitotic cell division and genomic stability are unknown. Here we report that the inner NE proteins SUN1 and SUN2 may play a redundant role in DDR. Mouse embryonic fibroblasts from Sun1(-/-)Sun2(-/-) mice displayed premature proliferation arrest in S phase of cell cycle, increased apoptosis and DNA damage, and decreased perinuclear heterochromatin, indicating genome instability. Furthermore, activation of ATM and H2A.X, early events in DDR, were impaired in Sun1(-/-)Sun2(-/-) fibroblasts. A biochemical screen identified interactions between SUN1 and SUN2 and DNA-dependent protein kinase (DNAPK) complex that functions in DNA nonhomologous end joining repair and possibly in DDR. Knockdown of DNAPK reduced ATM activation in NIH 3T3 cells, consistent with a potential role of SUN1- and SUN2-DNAPK interaction during DDR. SUN1 and SUN2 could affect DDR by localizing certain nuclear factors to the NE or by mediating communication between nuclear and cytoplasmic events.

Related Organizations
Keywords

Agricultural and Biological Sciences(all), DNA Repair, Biochemistry, Genetics and Molecular Biology(all), Telomere-Binding Proteins, Membrane Proteins, Nuclear Proteins, DNA-Activated Protein Kinase, Genomic Instability, DNA-Binding Proteins, Mice, Animals, Microtubule-Associated Proteins, Cells, Cultured, Cell Proliferation, DNA Damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 10%
Top 10%
Top 10%
hybrid