Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ G3: Genes, Genomes, ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
G3: Genes, Genomes, Genetics
Article . 2012 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
G3: Genes, Genomes, Genetics
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
License: CC BY
Data sources: PubMed Central
versions View all 3 versions

Surveillance of 3′ Noncoding Transcripts Requires FIERY1 and XRN3 in Arabidopsis

Authors: Kurihara, Yukio; Schmitz, Robert J.; Nery, Joseph R.; Schultz, Matthew D.; Okubo-Kurihara, Emiko; Morosawa, Taeko; Tanaka, Maho; +3 Authors

Surveillance of 3′ Noncoding Transcripts Requires FIERY1 and XRN3 in Arabidopsis

Abstract

Abstract Eukaryotes possess several RNA surveillance mechanisms that prevent undesirable aberrant RNAs from accumulating. Arabidopsis XRN2, XRN3, and XRN4 are three orthologs of the yeast 5′-to-3′ exoribonuclease, Rat1/Xrn2, that function in multiple RNA decay pathways. XRN activity is maintained by FIERY1 (FRY1), which converts the XRN inhibitor, adenosine 3′, 5′-bisphosphate (PAP), into 5′AMP. To identify the roles of XRNs and FRY1 in suppression of non-coding RNAs, strand-specific genome-wide tiling arrays and deep strand-specific RNA-Seq analyses were carried out in fry1 and xrn single and double mutants. In fry1-6, about 2000 new transcripts were identified that extended the 3′ end of specific mRNAs; many of these were also observed in genotypes that possess the xrn3-3 mutation, a partial loss-of-function allele. Mutations in XRN2 and XRN4 in combination with xrn3-3 revealed only a minor effect on 3′ extensions, indicating that these genes may be partially redundant with XRN3. We also observed the accumulation of 3′ remnants of many DCL1-processed microRNA (miRNA) precursors in fry1-6 and xrn3-3. These findings suggest that XRN3, in combination with FRY1, is required to prevent the accumulation of 3′ extensions that arise from thousands of mRNA and miRNA precursor transcripts.

Keywords

Investigations

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
Green
gold