Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Royal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the Royal Statistical Society Series C (Applied Statistics)
Article . 2009 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

A Bayesian Hierarchical Mixture Model for Platelet-Derived Growth Factor Receptor Phosphorylation to Improve Estimation of Progression-Free Survival in Prostate Cancer

Authors: Satoshi, Morita; Peter F, Thall; B Nebiyou, Bekele; Paul, Mathew;

A Bayesian Hierarchical Mixture Model for Platelet-Derived Growth Factor Receptor Phosphorylation to Improve Estimation of Progression-Free Survival in Prostate Cancer

Abstract

SummaryAdvances in understanding the biological underpinnings of many cancers have led increasingly to the use of molecularly targeted anticancer therapies. Because the platelet-derived growth factor receptor (PDGFR) has been implicated in the progression of prostate cancer bone metastases, it is of great interest to examine possible relationships between PDGFR inhibition and therapeutic outcomes. We analyse the association between change in activated PDGFR (phosphorylated PDGFR) and progression-free survival time based on large within-patient samples of cell-specific phosphorylated PDGFR values taken before and after treatment from each of 88 prostate cancer patients. To utilize these paired samples as covariate data in a regression model for progression-free survival time, and be cause the phosphorylated PDGFR distributions are bimodal, we first employ a Bayesian hierarchical mixture model to obtain a deconvolution of the pretreatment and post-treatment within-patient phosphorylated PDGFR distributions. We evaluate fits of the mixture model and a non-mixture model that ignores the bimodality by using a supnorm metric to compare the empirical distribution of each phosphorylated PDGFR data set with the corresponding fitted distribution under each model. Our results show that first using the mixture model to account for the bimodality of the within-patient phosphorylated PDGFR distributions, and then using the posterior within-patient component mean changes in phosphorylated PDGFR so obtained as covariates in the regression model for progression-free survival time, provides an improved estimation.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Top 10%
Average
hybrid
Related to Research communities
Cancer Research