Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1996 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Role of Nucleotide Exchange and Hydrolysis in the Function of Profilin in Actin Assembly

Authors: I, Perelroizen; D, Didry; H, Christensen; N H, Chua; M F, Carlier;

Role of Nucleotide Exchange and Hydrolysis in the Function of Profilin in Actin Assembly

Abstract

Profilin, an essential G-actin-binding protein, has two opposite regulatory functions in actin filament assembly. It facilitates assembly at the barbed ends by lowering the critical concentration (Pantaloni, D., and Carlier, M.-F. (1993) Cell 75, 1007-1014); in contrast it contributes to the pool of unassembled actin when barbed ends are capped. We proposed that the first of these functions required an input of energy. How profilin uses the ATP hydrolysis that accompanies actin polymerization and whether the acceleration of nucleotide exchange on G-actin by profilin participates in its function in filament assembly are the issues addressed here. We show that 1) profilin increases the treadmilling rate of actin filaments in the presence of Mg2+ ions; 2) when filaments are assembled from CaATP-actin, which polymerizes in a quasireversible fashion, profilin does not promote assembly at the barbed ends and has only a G-actin-sequestering function; 3) plant profilins do not accelerate nucleotide exchange on G-actin, yet they promote assembly at the barbed end. The enhancement of nucleotide exchange by profilin is therefore not involved in its promotion of actin assembly, and the productive growth of filaments from profilin-actin complex requires the coupling of ATP hydrolysis to profilin-actin assembly, a condition fulfilled by Mg-actin, and not by Ca-actin.

Keywords

Sequence Homology, Amino Acid, Arabidopsis Proteins, Hydrolysis, Microfilament Proteins, Molecular Sequence Data, Arabidopsis, Actins, Profilins, Adenosine Triphosphate, Biopolymers, Contractile Proteins, Animals, Amino Acid Sequence, Rabbits, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    133
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
133
Top 10%
Top 10%
Top 1%
gold