Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neuroscience Methods
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Quantification of mitochondrial morphology in neurites of dopaminergic neurons using multiple parameters

Authors: Lyle, Wiemerslage; Daewoo, Lee;

Quantification of mitochondrial morphology in neurites of dopaminergic neurons using multiple parameters

Abstract

Studies of mitochondrial morphology vary in techniques. Most use one morphological parameter while others describe mitochondria qualitatively. Because mitochondria are so dynamic, a single parameter does not capture the true state of the network and may lead to erroneous conclusions. Thus, a gestalt method of analysis is warranted.This work describes a method combining immunofluorescence assays with computerized image analysis to measure the mitochondrial morphology within neuritic projections of a specific population of neurons. Six parameters of mitochondrial morphology were examined utilizing ImageJ to analyze colocalized signals.Using primary neuronal cultures from Drosophila, we tested mitochondrial morphology in neurites of dopaminergic (DA) neurons. We validate our model using mutants with known defects in mitochondrial morphology. Furthermore, we show a difference in mitochondrial morphology between cells treated as control or with a neurotoxin inducing PD (Parkinson's Disease in humans)-like pathology. We also show interactions between morphological parameters and experimental treatment.Our method is a significant improvement of previously described methods. Six morphometric parameters are quantified, providing a gestalt analysis of mitochondrial morphology. Also it can target specific populations of mitochondria using immunofluorescence assay and image analysis.We found that our method adequately detects differences in mitochondrial morphology between treatment groups. We conclude that some parameters may be unique to a mutation or a disease state, and the relationship between parameters is altered by experimental treatment. We suggest at least four variables should be considered when using mitochondrial structure as an experimental endpoint.

Related Organizations
Keywords

Principal Component Analysis, Embryo, Nonmammalian, Dopaminergic Neurons, Green Fluorescent Proteins, Statistics as Topic, Membrane Proteins, Mitochondria, Animals, Genetically Modified, Cytoskeletal Proteins, Microscopy, Electron, Animals, Newborn, GTP-Binding Proteins, Image Processing, Computer-Assisted, Neurites, Animals, Drosophila Proteins, Drosophila, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    120
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
120
Top 1%
Top 10%
Top 1%
bronze