Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2005
versions View all 3 versions

Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth

Authors: Bryan, Brad; Cai, Yi; Wrighton, Katharine; Wu, Gangyi; Feng, Xin-Hua; Liu, Mingyao;

Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth

Abstract

The Rho‐family of small GTPases consists of essential regulators of neurite outgrowth, axonal pathfinding, and dendritic arborization. Previous work has demonstrated in non‐neuronal cell types that Smurf1, an E3 ubiquitin ligase, regulates cell polarity and protrusive activity via PKCζ‐dependent recruitment to cellular protrusion sites, and subsequent ubiquitination and proteasomal degradation of RhoA. In this study, we show that Smurf1 enhances neurite outgrowth in Neuro2a neuroblastoma cells. We demonstrate that RhoA is ubiquitinated, and that Smurf1 and RhoA physically interact in vivo. Interestingly, Smurf1 overexpression in Neuro2a cells dramatically reduces RhoA protein levels during dibutyric cyclic AMP, but not retinoic acid induced neurite outgrowth. This Smurf1‐dependent reduction in RhoA protein levels was abrogated using the general proteasome inhibitor MG132, suggesting that RhoA is targeted for ubiquitination and degradation via Smurf1. Together, our data suggest that localized regulation of different subsets of Rho GTPases by specific guidance signals results in an intracellular asymmetry of RhoA activity, which could regulate neurite outgrowth and guidance.

Related Organizations
Keywords

Ubiquitin, Ubiquitin-Protein Ligases, Neurite outgrowth, Protein ubiquitination, RhoA, Cell Differentiation, Rats, Gene Expression Regulation, Neoplastic, E3 ubiquitin ligase, Bucladesine, Cell Line, Tumor, Enzyme Stability, Neurites, Animals, Humans, Smurf1, rhoA GTP-Binding Protein, Cell Shape, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
bronze