Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Two SUR1-specific Histidine Residues Mandatory for Zinc-induced Activation of the Rat KATP Channel

Authors: Victor, Bancila; Thierry, Cens; Dominique, Monnier; Frédéric, Chanson; Cécile, Faure; Yves, Dunant; Alain, Bloc;

Two SUR1-specific Histidine Residues Mandatory for Zinc-induced Activation of the Rat KATP Channel

Abstract

Zinc at micromolar concentrations hyperpolarizes rat pancreatic beta-cells and brain nerve terminals by activating ATP-sensitive potassium channels (KATP). The molecular determinants of this effect were analyzed using insulinoma cell lines and cells transfected with either wild type or mutated KATP subunits. Zinc activated KATP in cells co-expressing rat Kir6.2 and SUR1 subunits, as in insulinoma cell lines. In contrast, zinc exerted an inhibitory action on SUR2A-containing cells. Therefore, SUR1 expression is required for the activating action of zinc, which also depended on extracellular pH and was blocked by diethyl pyrocarbonate, suggesting histidine involvement. The five SUR1-specific extracellular histidine residues were submitted to site-directed mutagenesis. Of them, two histidines (His-326 and His-332) were found to be critical for the activation of KATP by zinc, as confirmed by the double mutation H326A/H332A. In conclusion, zinc activates KATP by binding itself to extracellular His-326 and His-332 of the SUR1 subunit. Thereby zinc could exert a negative control on cell excitability and secretion process of pancreatic beta-and alpha-cells. In fact, we have recently shown that such a mechanism occurs in hippocampal mossy fibers, a brain region characterized, like the pancreas, by an important accumulation of zinc and a high density of SUR1-containing KATP.

Keywords

Receptors, Drug, Kidney, Sulfonylurea Receptors, Recombinant Proteins, Cell Line, Rats, Pancreatic Neoplasms, Zinc, Cell Line, Tumor, Mutagenesis, Site-Directed, Animals, Humans, ATP-Binding Cassette Transporters, Histidine, Insulinoma, Multidrug Resistance-Associated Proteins, Potassium Channels, Inwardly Rectifying

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Top 10%
gold