Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://www.cell.com/article/S0...
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Journal
Article . 2020 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Journal
Article . 2020 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
https://doi.org/10.1101/808469...
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions

DHHC20 palmitoyl-transferase reshapes the membrane to foster catalysis

Authors: Stix, R.; Song, J.; Banerjee, A.; Faraldo-Gómez, J.D.;

DHHC20 palmitoyl-transferase reshapes the membrane to foster catalysis

Abstract

AbstractCysteine palmitoylation, a form of S-acylation, is a key post-translational modification in cellular signaling. This type of reversible lipidation is catalyzed by a family of integral membrane proteins known as DHHC acyltransferases. The first step in the S-acylation process is the recognition of free acyl-CoA from the lipid bilayer. The DHHC enzyme then becomes auto-acylated, at a site defined by a conserved Asp-His-His-Cys motif. This reaction entails ionization of the catalytic Cys. Intriguingly, in known DHHC structures this catalytic Cys appears to be exposed to the hydrophobic interior of the lipid membrane, which would be highly unfavorable for a negatively charged nucleophile, thus hindering auto-acylation. Here, we use biochemical and computational methods to reconcile these seemingly contradicting facts. First, we experimentally demonstrate that human DHHC20 is active when reconstituted in POPC nanodiscs. Microsecond-long all-atom molecular dynamics simulations are then calculated for hDHHC20 and for different acyl-CoA forms, also in POPC. Strikingly, we observe that hDHHC20 induces a drastic deformation in the membrane, particularly on the cytoplasmic side where auto-acylation occurs. As a result, the catalytic Cys becomes hydrated and optimally positioned to encounter the cleavage site in acyl-CoA. In summary, we hypothesize that DHHC enzymes locally reshape the membrane to foster a morphology that is specifically adapted for acyl-CoA recognition and auto-acylation.Significance StatementPalmitoylation, the most common form of S-acylation and the only reversible type of protein lipidation, is ubiquitous in eukaryotic cells. In humans, for example, it has been estimated that as much as ∼10% of the proteome becomes palmitoylated, i.e. thousands of proteins. Accordingly, protein palmitoylation touches every important aspect of human physiology, both in health and disease. Despite its biological and biomedical importance, little is known about the molecular mechanism of the enzymes that catalyze this post-translational modification, known as DHHC acyltransferases. Here, we leverage the recently-determined atomic-resolution structure of human DHHC20 to gain novel insights into the mechanism of this class of enzymes, using both experimental and computational approaches.

Keywords

Acylation, Lipoylation, Humans, Acyl Coenzyme A, Acyltransferases, Catalysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
hybrid