Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Bone and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Bone and Mineral Research
Article . 2010 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2011
License: CC BY
Data sources: PubMed Central
versions View all 3 versions

Polymorphisms in predicted miRNA binding sites and osteoporosis

Authors: Lei, Shu-Feng; Papasian, Christopher J; Deng, Hong-Wen;

Polymorphisms in predicted miRNA binding sites and osteoporosis

Abstract

Abstract MicroRNAs (miRNAs) regulate posttranscriptional gene expression usually by binding to 3'-untranslated regions (3'-UTRs) of target message RNAs (mRNAs). Hence genetic polymorphisms on 3'-UTRs of mRNAs may alter binding affinity between miRNAs target 3'-UTRs, thereby altering translational regulation of target mRNAs and/or degradation of mRNAs, leading to differential protein expression of target genes. Based on a database that catalogues predicted polymorphisms in miRNA target sites (poly-miRTSs), we selected 568 polymorphisms within 3'-UTRs of target mRNAs and performed association analyses between these selected poly-miRTSs and osteoporosis in 997 white subjects who were genotyped by Affymetrix Human Mapping 500K arrays. Initial discovery (in the 997 subjects) and replication (in 1728 white subjects) association analyses identified three poly-miRTSs (rs6854081, rs1048201, and rs7683093) in the fibroblast growth factor 2 (FGF2) gene that were significantly associated with femoral neck bone mineral density (BMD). These three poly-miRTSs serve as potential binding sites for 9 miRNAs (eg, miR-146a and miR-146b). Further gene expression analyses demonstrated that the FGF2 gene was differentially expressed between subjects with high versus low BMD in three independent sample sets. Our initial and replicate association studies and subsequent gene expression analyses support the conclusion that these three polymorphisms of the FGF2 gene may contribute to susceptibility to osteoporosis, most likely through their effects on altered binding affinity for specific miRNAs. © 2011 American Society for Bone and Mineral Research.

Related Organizations
Keywords

Male, Binding Sites, Femur Neck, Reproducibility of Results, Middle Aged, Polymorphism, Single Nucleotide, MicroRNAs, Gene Expression Regulation, Bone Density, Humans, Osteoporosis, Original Article, Female, Fibroblast Growth Factor 2, Genetic Predisposition to Disease, Genetic Association Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 10%
Top 10%
Top 10%
Green
hybrid