Ser46 Phosphorylation Regulates p53-Dependent Apoptosis and Replicative Senescence
doi: 10.4161/cc.5.23.3526
pmid: 17172844
Ser46 Phosphorylation Regulates p53-Dependent Apoptosis and Replicative Senescence
Posttranslational modification such as phosphorylation of p53 plays important roles in activating p53 responses to various cellular and genotoxic stresses. Cell line studies have shown that phosphorylation of Ser46 is correlated with the activation of p53 apoptotic activity. To address the physiological roles of Ser46 phosphorylation, we employed homologous recombination and LoxP/Cre-mediated deletion to introduce Ser46 to Ala missense mutation into the human p53 knock-in (HUPKI) allele in mice (p53hki(S46A)). p53 stabilization in response to various types of DNA damage is modestly reduced in p53hki(S46A) embryonic stem (ES) cells, mouse embryonic fibroblasts (MEFs) and thymocytes. In addition, p53-dependent apoptosis is partially impaired in p53hki(S46A) thymocytes and E1A/Ras-expressing mouse embryonic fibroblasts (MEFs) after DNA damage. Consistent with this finding, transcription of p53 target apoptotic genes is preferentially affected by S46A mutation after DNA damage. p53hki(S46A) MEFs proliferate and reach senescence normally but can be spontaneously immortalized more easily than wild type MEFs. In addition, p53hki(S46A) MEFs more readily escapes from Ras-induced senescence. Therefore, Ser46 phosphorylation activates p53-dependent apoptosis induced by DNA damage and cellular senescence induced by oncogenic stress.
- University of California, San Diego United States
- University of California, San Diego United States
Alanine, Apoptosis, Exons, Thymus Gland, Fibroblasts, Embryo, Mammalian, Mice, Mutant Strains, DNA-Binding Proteins, Mice, Phosphoserine, Radiation, Ionizing, Mutation, Serine, Animals, Humans, Phosphorylation, Tumor Suppressor Protein p53, Cellular Senescence, Cell Proliferation, DNA Damage
Alanine, Apoptosis, Exons, Thymus Gland, Fibroblasts, Embryo, Mammalian, Mice, Mutant Strains, DNA-Binding Proteins, Mice, Phosphoserine, Radiation, Ionizing, Mutation, Serine, Animals, Humans, Phosphorylation, Tumor Suppressor Protein p53, Cellular Senescence, Cell Proliferation, DNA Damage
149 Research products, page 1 of 15
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2009IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).102 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
